Structure of the light-harvesting bacteriochlorophyll c assembly in chlorosomes from Chlorobium limicola determined by solid-state NMR.

نویسندگان

  • Ayako Egawa
  • Toshimichi Fujiwara
  • Tadashi Mizoguchi
  • Yoshinori Kakitani
  • Yasushi Koyama
  • Hideo Akutsu
چکیده

We have determined the atomic structure of the bacteriochlorophyll c (BChl c) assembly in a huge light-harvesting organelle, the chlorosome of green photosynthetic bacteria, by solid-state NMR. Previous electron microscopic and spectroscopic studies indicated that chlorosomes have a cylindrical architecture with a diameter of approximately 10 nm consisting of layered BChl molecules. Assembly structures in huge noncrystalline chlorosomes have been proposed based mainly on structure-dependent chemical shifts and a few distances acquired by solid-state NMR, but those studies did not provide a definite structure. Our approach is based on (13)C dipolar spin-diffusion solid-state NMR of uniformly (13)C-labeled chlorosomes under magic-angle spinning. Approximately 90 intermolecular C C distances were obtained by simultaneous assignment of distance correlations and structure optimization preceded by polarization-transfer matrix analysis. It was determined from the approximately 90 intermolecular distances that BChl c molecules form piggyback-dimer-based parallel layers. This finding rules out the well known monomer-based structures. A molecular model of the cylinder in the chlorosome was built by using this structure. It provided insights into the mechanisms of efficient light harvesting and excitation transfer to the reaction centers. This work constitutes an important advance in the structure determination of huge intact systems that cannot be crystallized.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Internal structure of chlorosomes from brown-colored chlorobium species and the role of carotenoids in their assembly.

Chlorosomes are the main light harvesting complexes of green photosynthetic bacteria. Recently, a lamellar model was proposed for the arrangement of pigment aggregates in Chlorobium tepidum chlorosomes, which contain bacteriochlorophyll (BChl) c as the main pigment. Here we demonstrate that the lamellar organization is also found in chlorosomes from two brown-colored species (Chl. phaeovibrioid...

متن کامل

Nine mutants of Chlorobium tepidum each unable to synthesize a different chlorosome protein still assemble functional chlorosomes.

Chlorosomes of the green sulfur bacterium Chlorobium tepidum comprise mostly bacteriochlorophyll c (BChl c), small amounts of BChl a, carotenoids, and quinones surrounded by a lipid-protein envelope. These structures contain 10 different protein species (CsmA, CsmB, CsmC, CsmD, CsmE, CsmF, CsmH, CsmI, CsmJ, and CsmX) but contain relatively little total protein compared to other photosynthetic a...

متن کامل

Chlorobium tepidum mutant lacking bacteriochlorophyll c made by inactivation of the bchK gene, encoding bacteriochlorophyll c synthase.

The gene encoding bacteriochlorophyll (BChl) c synthase was identified by insertional inactivation in the photosynthetic green sulfur bacterium Chlorobium tepidum and was named bchK. The bchK mutant of C. tepidum was rusty-orange in color and completely lacked BChl c. Because of the absence of the BChl c antenna, the mutant grew about seven times slower than the wild type at light intensities t...

متن کامل

Effect of carotenoids and monogalactosyl diglyceride on bacteriochlorophyll c aggregates in aqueous buffer: implications for the self-assembly of chlorosomes.

Aggregation of bacteriochlorophyll (BChl) c from chlorosomes, the main light-harvesting complex of green bacteria, has been studied in aqueous buffer. Unlike other chlorophyll-like molecules, BChl c is rather soluble in aqueous buffer, forming dimers. When BChl c is mixed with carotenoids (Car), the BChl c Qy transition is further redshifted, in respect to that of monomers and dimers. The resul...

متن کامل

Nanosecond laser photolysis studies of chlorosomes and artificial aggregates containing bacteriochlorophyll e: evidence for the proximity of carotenoids and bacteriochlorophyll a in chlorosomes from Chlorobium phaeobacteroides strain CL1401.

Time-resolved, laser-induced changes in absorbance, delta A(lambda; t), have been recorded with a view to probing pigment-pigment interactions in chlorosomes (control as well as carotenoid-depleted) and artificial aggregates of bacteriochlorophyll e (BChle). Control chlorosomes were isolated from Chlorobium phaeobacteroides strain CL1401, whose chromophores comprise BChle, bacteriochlorophyll a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 104 3  شماره 

صفحات  -

تاریخ انتشار 2007